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A novel immersed boundary (IB) method has been developed for simulating multi-material
heat transfer problem – a cylinder in a channel heated from below with mixed convection.
The method is based on a second-order velocity/scalar reconstruction near the IB. A novel
algorithm has been developed for the IB method to handle conjugate heat transfer. The
fluid–solid interface is constructed as a collection of disjoint faces of control volumes asso-
ciated to different material zones. Coupling conditions for the material zones have been
developed such that continuity and conservation of the scalar flux are satisfied by a sec-
ond-order interpolation. Predictions of the local Nusselt number on the cylinder surface
show good agreement with the experimental data. The effect of the Boussinesq approxima-
tion on this problem was also investigated. Comparison with the variable density formula-
tion suggests that, in spite of a small thermal expansion coefficient of water, the variable
density formulation in a transitional flow with mixed convection is preferable.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The immersed boundary (IB) method is a numerical technique to enforce boundary conditions on surfaces not aligned
with the mesh. This method has become popular for flow problems involving very complex geometries often encountered
in engineering applications. Compared to a body-fitted mesh, the IB method is advantageous in three situations. First, it
provides an alternative to body-fitted mesh for very complex geometry; in this case, the amount of user interventions
and turn-around time for mesh generation can be reduced by using a simpler mesh structure. The second advantage relates
to problems associated with moving geometries. Since the effect of geometry is imposed in the solution step, it is relatively
straightforward to include boundary motion and possible interactions between fluid flow and structures. Another advantage
presents itself in multi-phase or multi-material problems. More specifically, the interface between different materials can be
regarded as an immersed boundary. The IB method is then equivalent to the imposition of physical conditions at the
interface.

The IB method was first introduced by Peskin [28] for computing blood flow in the cardiovascular system. Subsequently,
there have been numerous efforts to enhance the accuracy, stability and range of applicability of the IB method. Readers can
refer to articles by [24,15] for information on the previous studies. So far, IB methods have been applied to a wide range of
applications: compressible flows [7,22], particulate flows [36,38], micro-scale flows [1], interaction with solid bodies ([8,40],
among others), multi-phase flows [6], conjugate heat transfer [14,39], environmental flows [33], bio-fluids [5], etc. However,
the number of published studies which validated near-wall statistics of turbulent flows is relatively small.
. All rights reserved.
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In the present study, we explore a turbulent conjugate heat transfer problem where the modes of convective and conduc-
tive heat transfer are handled simultaneously. Problems with conjugate heat transfer are very common in industrial appli-
cations, thus may benefit greatly from easier mesh generation accomplished by the IB method.

In the literature, conjugate heat transfer in turbulent flows has been widely investigated. The majority of the studies have
used RANS-based models ([37,26,13,12], among others). Very few studies have used LES or DNS for conjugate heat transfer
problems. Tiselj et al. [35] applied DNS to a conjugate heat transfer between a turbulent channel flow and a solid wall. This
study yielded improved results compared to those obtained with RANS. Smirnova and Kalaev [32] applied a LES approach to
a problem of crystal growth. Both studies used a body-fitted methods. Iaccarino and Moreau [14] applied the IB method to
conjugate heat transfer problems using a RANS model. Yu et al. [39] applied a distributed Lagrange multiplier-based ficti-
tious domain method to a conjugate heat transfer problem of a particulate flow at low Reynolds number. Song et al. [34]
used an IB method to investigate the effect of thermal resistance of solid wall on turbulent heat transfer in a ribbed channel.
Certainly, there are very few previous studies that have used an IB method for LES/DNS of a conjugate heat transfer problem.

The objective of the present study is to assess the accuracy and efficiency of the IB method for LES/DNS of a turbulent
conjugate heat transfer problem. For this purpose, a novel method is developed by extending an existing IB method to mul-
ti-material problems and verified using a simple analytic solution. The present validation study is focused on a mixed, con-
jugate, transitional heat transfer problem around a heated cylinder in a channel heated from below [21]; we compare the
present computation to the experiment for the near-wall temperature field, the transition to turbulence due to thermal
instabilities, and the validity of the Boussinesq approximation.

In the next section, description of numerical schemes – the flow solver, the IB method and extension to multi-material
problems – are presented. Section 3 shows a verification study to test accuracy of the developed IB method. Results from
simulations of a heated cylinder are presented in Section 4. From parametric studies on flow and computational conditions,
conclusions are derived in Section 5.
2. Numerical methods

2.1. Description of the Navier–Stokes solvers

In the present study, a heat transfer problem with mixed convection is considered. The variable density formulation of the
Navier–Stokes equations is written as:
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where t is the time, q is the density, ui is the velocity, p is the pressure, l is the molecular viscosity, and gi is the vector of the
gravitational acceleration. T is the temperature, h = cpT is the enthalpy, and k is the thermal conductivity. Note that q,l and k
are functions of the temperature for water [19].

The solution of the Navier–Stokes equations (1)–(3) is obtained using a solver called CDP1: a fully implicit LES solver based
on an unstructured collocated mesh. In this code, the time-staggered scheme of [29] is employed. Then, the discretized momen-
tum equation at (n + 1/2)th time step is written as:
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and the discretized continuity and energy equations at n-th time step are:
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where Dt is the time step. In CDP, the spatial derivatives are computed using a finite volume method (FVM) for node-based
collocated mesh. The flux at the face of a control volume is evaluated by applying a second-order interpolation and mid-point
is named after Charles David Pierce (1969–2002).
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rule for numerical integration. Further details about CDP are available in [10,9]. To solve the discretized equations (Eqs. (4)–
(6)) efficiently, a variant of the fractional-step method [20] is employed.

In order to achieve optimal control of the grid size, locally refined meshes (i.e., a mesh consisting of hexahedral elements
with hanging nodes) are used with the IB method. Several approaches have been used in the previous studies for the treat-
ment of hanging nodes ([31,11,3,25], among others). In the present study, elements around hanging nodes are treated as
unstructured polyhedral control volumes. It is obviously more time-consuming to use a solver for unstructured meshes with
the IB method than to use a solver specifically developed for structured meshes. However, locally refined meshes can be trea-
ted without modifications in the present framework; moreover, it can easily support load-balanced computations in a mas-
sively parallel computing environment. Further details on local mesh refinement in the present study are available in [18].

In addition to the variable density formulation, we considered the incompressible Navier–Stokes equations with the
Boussinesq approximation and constant material properties:
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where m is the kinematic viscosity, a is the thermal diffusivity, b is the coefficient of thermal expansion, and T1 is the far-field
temperature. This problem is dependent on three non-dimensional parameters – the Reynolds number (Re = U0L/m), the Gras-
hof number (Gr = gbDTL3/m2), and the Prandtl number (Pr = m/a). U0 is a reference velocity, L is a reference length, and DT is a
reference temperature difference.

2.2. Description of the immersed boundary-approximated domain method (IB-ADM)

The present IB method for conjugate heat transfer is based on an IB method called the immersed boundary-approximated
domain method (IB-ADM). This method is discussed in detail in [18] and only briefly described in this section.

The IB-ADM is based on the interpolation method of [4] which employs reconstruction of the velocity and scalar near the
IB. However, IB-ADM augments the original method by satisfying an additional constraint on the pressure which decouples
the flow domain from other physically unrelated domains. This guarantees the pressure accuracy and enables the method to
handle very thin solid interfaces accurately. Fig. 1 shows an example of the immersed boundary (thick black line, CIB), the
approximated domain (shaded area, Xa), and approximated boundary (thick gray line, Ca). The Xa is identified by excluding
the grid cells crossed by the IB from the fluid region Xfluid. In IB-ADM, the discretized governing equations are satisfied with-
out modification inside Xa, and the reconstruction method is used only to provide the velocity/scalar boundary conditions of
Xa. Fig. 2 shows the reconstructed velocity components on Ca for the staggered, CV-collocated and node-collocated arrange-
ments of the velocity variables. This leads to an additional condition for global mass conservation:
Z
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which is satisfied by a least-square algorithm.
Specifically, consider an interpolation method for the velocity:
~um ¼
X

nb

wnb;m~unb;m þwIB;m~uIB;m; ð11Þ
where m is the index of the face in Ca where ~um is located, wnb,m is the interpolation coefficient, nb denotes the index of
neighboring points,~unb;m is the neighboring velocity of~um, and~uIB;m is the velocity at an IB position that is the boundary-nor-
mal projection of the point of ~um. Eq. (11) is second-order accurate but does not necessarily satisfy mass conservation [18].
The constraint of global mass conservation Eq. (10) is satisfied by a correction term:
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Fig. 1. Examples of the approximated domain and boundary.
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Fig. 2. Examples of the interpolated velocity components on the approximated boundary Ca in different arrangements of the velocity variables.
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where Qe is the error of Eq. (11) to the mass constraint, Na denotes the total number of the faces in Ca;
P

k is summation over
k ¼ 1—3;~Am is the outward-normal face-area vector at the face, xk,m is the relative location of ~um to the ~uIB;m, and qm is the
density at this location.

In the present approach, imposing boundary conditions at Ca results in all flow variables (velocity, pressure and scalar) at
CVs in Xsolid and CVs crossed by the IB being excluded from the computation. This, therefore, does not cause an unrealistic
flow in the solid region. In numerical tests, IB-ADM showed second-order accuracy for velocity, pressure and scalar fields,
and was validated with DNS of a turbulent channel flow and LES of a flow around an airfoil at Rec = 150,000 (c is the chord
length) to correctly predict the statistics of wall flow variables. Detailed results are available in [18].

2.3. Implementation for a multi-material problem (conjugate heat transfer)

In the previous section, the description of the present IB method focused exclusively on a single fluid region. This ap-
proach can be extended easily to problems with multiple materials with different properties. An example of multi-material
problems is a conjugate heat transfer problem where convective heat transfer in the fluid and conductive heat transfer in the
solid are handled simultaneously. The IB method was first applied to conjugate heat transfer problems in [14,39]. A problem
with the turbulent conjugate heat transfer will be presented in Section 4.

As previously noted, in the IB-ADM framework, different domains (fluid and solid) across the IB are completely segre-
gated in the discretized governing equations. In several existing numerical methods for multi-phase or multi-material prob-
lems, the discretization stencil for governing equations are maintained at the phase (material) interface. This can simplify
the implementation but tends to increase the numerical stiffness when the ratio of material properties across the interface
is very large. In the present approach, approximated boundaries are created and therefore a one-sided boundary discreti-
zation is used. Our approach is notionally similar to sub-domain methods for multi-block grids with discontinuous grid
interface in the sense that the boundary conditions are communicated across the interface iteratively in the matrix solution
step.

Fig. 3 shows the three steps necessary to build the communication across the interface between two adjoining materials.
Starting from the true fluid–solid interface, two approximated boundaries facing each other across the true interface (Cfluid

and Csolid in Fig. 3(b)) are constructed. The approximated boundaries are built as in the previous section. The final stage is to
build connections between points on the two approximated boundaries. If these are projected onto the true material inter-
face, then these projected boundaries can be considered as two adjoining discontinuous grids. Fig. 3(c) shows a simplified
two-dimensional example. Interpolation on this surface is used to communicate information across the interface. To sum-
marize, the present study takes the following four steps to build the interpolation coefficients:

(1) Locate the wall-normal projection onto the true material interface for the two approximated boundaries.
(2) For each data point of one projected boundary (i.e., zone A), find a triangle in the other projected boundary (zone B) so

that the area of the triangle is smallest among those that encompass the data point in zone A.
(3) Build interpolation coefficients from the three points in zone B to the data point in zone A using a second-order

polynomial.
(4) Repeat steps (2)–(3) in order to build interpolation coefficients for data points in zone B.

Fig. 4 presents the steps (2)–(3) in an example. For a data point in projected zone A (PA, gray), an encompassing triangle
(shaded one) of points in projected zone B is found. Here, PB,c = (PB,1 + PB,2 + PB,3 + PB,4)/4. Then, the interpolation for PA is con-
structed using PB,1,PB,2 and PB,c using a linear polynomial. In practice, PA may not be in the plane of (PB,1,PB,2,PB,c). Thus, the
normal projection of PA is used instead.
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Fig. 4. Schematic diagram for finding interpolation coefficients from zone B to A.
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Fig. 3. Schematic diagrams for interface treatment between different materials: (a) true fluid–solid interface; (b) construction of approximated boundaries
facing each other (Cfluid and Csolid); (c) computation of interpolation coefficients from the projected boundaries.

S. Kang et al. / Journal of Computational Physics 228 (2009) 3189–3208 3193
This initialization is a general process for building connection between approximated boundaries; it is not specific to con-
jugate heat transfer problems. However, the data communicated across the material interface are specific to a given problem.
Here, continuity of the temperature field and balance of the heat flux must be satisfied at the interface:
Tfluid ¼ Tsolid; ð13Þ
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where n denotes the normal to the true interface and k denotes the thermal conductivity of a material.
In the present method, these conditions are adapted as boundary conditions. Because it is impossible to use both condi-

tions as boundary conditions for single domain, Eqs. (13) and (14) are asymmetrically satisfied at the approximated bound-
aries of fluid and solid domains. Specifically, the Dirichlet B.C. (Eq. (13)) is enforced at the boundary of the fluid domain,
while the Neumann B.C. (Eq. (14)) is enforced at the boundary of the solid domain. These are the modified boundary condi-
tions for each domain:
Tfluid ¼ dTsolid ; ð15Þ
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where^denotes interpolation from the source to the target boundary. The wall-normal heat flux is computed from the recon-
struction formula for imposing the boundary conditions, which is equivalent to one-side finite difference.

In the matrix solution step, the boundary conditions are interpolated and communicated across the interface. This update
process is performed during every iteration of the solution step, until the residual is smaller than a preset convergence cri-
terion. The Dirichlet B.C. is chosen for the fluid domain because it is naturally more stable than the Neumann B.C. and the
heat conductivity of the solid is typically much greater than the fluid.
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The present method is based on a second-order interpolation method; therefore, the communication process and asym-
metric way of satisfying the energy equation at the material interface (i.e., Eqs. (15) and (16)) have second-order accuracy.
However, a first-order error term is generated during the process of computing the heat flux at the interface because one-
side finite difference is used for the first-order derivative. A first-order error term is also generated in imposition of the Neu-
mann B.C. (Eq. (16)). As a result, the accuracy of overall method is reduced to first order. Increasing the accuracy is possible
by increasing the width of discretization stencil and using a higher-order reconstruction formula (e.g. quadratic interpola-
tion), but this was not pursued in the present study, because very fine grids are used and the results are not too sensitive
to the accuracy close to the wall.

3. Verification study

3.1. Flow around a heated sphere

A steady flow around a heated sphere was computed to validate the IB method in a heat transfer problem. When a sphere
positioned in a quiescent fluid is heated to a temperature higher than the ambient, the density gradient in the fluid drives the
flow upward (natural convection). The local Nusselt number on the sphere surface is compared to results from simulations
with a body-fitted mesh.

The Grashof number (Gr) based on the radius (R) of the sphere is 104, the Reynolds number is Re = Gr0.5, and the Prandtl
number is Pr = 0.72. Fig. 5 shows the computational mesh of the present study. Again, the mesh is generated by means of the
refinement algorithms introduced before. The far-field boundary is located at r = 16R, where r is the distance from the center
of the sphere. A non-dimensional temperature H = (T � Tf)/(Ts � Tf) is introduced where Ts and Tf are the sphere and far-field
temperatures, respectively. H is then set to 1 at the sphere and 0 at the far-field boundary. For the velocity, the no-slip con-
dition is enforced at the sphere and far-field boundary. The total number of grid points is 2.0 million. The grid spacing near
the sphere is about 0.01R. For the body-fitted simulations, the same flow solver and structured meshes in spherical coordi-
nates are used. The grid spacing in every coordinate is 1/2 (coarse mesh) or 1/4 (fine mesh) of the mesh used in [17]. The
coarse mesh has a resolution near the sphere similar to the mesh in Fig. 5.

Fig. 6(a) shows contours of the streamwise (y) velocity and temperature. A steady flow is obtained at this Grashof num-
ber. Fig. 6(b) shows the non-dimensionalized heat transfer coefficient compared to simulations using a body-fitted mesh.
Agreement between the present IB and body-fitted simulations is satisfactory. Difference between the body-fitted simula-
tions is less than 0.5% which shows grid convergence.

Jia and Gogos [17] mentioned a few correlations between the averaged Nusselt number and non-dimensional parameters
proposed by previous studies based on experiments and theory for natural convection around a sphere. In Table 1, our result
agrees reasonably well with each other and [17].
Fig. 5. Locally refined mesh for a heated sphere.

Table 1
Averaged Nusselt number at the wall compared to previous studies.

Body-fitted (coarse) IB [17] [23] [2]

�Nu ¼ 2�hR=k 8.63 8.60 8.74 9.75 9.05
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Fig. 6. Results of the case with Gr = 104: (a) contours of the y-velocity and temperature; (b) heat transfer coefficients. � , body-fitted simulation (coarse); �,
body-fitted simulation (fine); ——, IB simulation.
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3.2. Accuracy of the IB method for conjugate heat transfer

The accuracy of the method in Section 2.3 was verified with a two-dimensional laminar test case. Fig. 7 shows a sche-
matic diagram of a heat transfer problem between two coannular cylinders. A fluid is rotating between the inner and outer
cylinders. The outer cylinder is rotating so that the radial velocity at the wall is Uo, while the inner cylinder is stationary.
The temperature is set to Ti at the inner wall of the inner cylinder and To at the wall of the outer cylinder. The energy
balance Eqs. (15) and (16) are satisfied at the interface (r = Rm) between the fluid and inner cylinder. The radius of the in-
ner and outer walls of the inner cylinder and the wall of the outer cylinder is Ri = 0.45,Rm = 0.9and Ro = 1.8, respectively.
The ratio of constant heat conductivities between the solid and fluid (ks/kf) is set to 9. This problem has an analytic solu-
tion that satisfies two-dimensional steady Navier–Stokes and energy equations with energy balance at the interface, Eqs.
(13) and (14):
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where r and h denote the radial and azimuthal directions. Steady velocity and temperature fields were computed for three
different grid spacings. The accuracy was then deduced by comparing the maximum error versus the grid spacing. Fig. 8
shows the maximum error in the velocity and temperature. The temperature shows an accuracy less than second order,
but higher than first order (=1.5). As mentioned in Section 2.3, this is due to the limited width of discretization and
reconstruction stencils for the Neumann B.C. The velocity is second-order accurate because of the Dirichlet B.C. at both walls.
When the exact temperature at r = Rm is imposed as the Dirichlet B.C. (the dotted line), the temperature shows second-order
accuracy.

4. A heated cylinder in a channel heated from below

In this section, the IB method is applied to a turbulent conjugate heat transfer problem investigated both experimentally
and numerically by Laskowski et al. [21]. This problem involves mixed convection, transition to turbulence, and conjugate
heat transfer. The most important metric for validation is the time-averaged heat flux at the interface between the fluid and
the solid.

4.1. Experimental configuration

Fig. 9 shows the configuration used in [21], based on water flow in a channel. The bottom wall is heated to a high tem-
perature from the streamwise (x) location x = 0. This surface heating results in a thermal boundary layer developing along
the bottom wall. A horizontal tube made of stainless steel is placed along the spanwise (z) direction. The wall-normal (y)
location of the tube is approximately the edge of the mean thermal boundary layer. The outer and the inner walls of the tube
are referred to as the outer and the inner cylinder, respectively. Inside the inner cylinder, there is a flow of hot water that
heats the tube. The thermal boundary layer developing along the bottom wall interacts with the heat flux transferred from
inU

inT

wT
x

y ''q

Fig. 9. Schematic diagram of a heated cylinder inside a channel heated from below.
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the inner cylinder to the outer cylinder. The Reynolds number, based on the mean streamwise velocity (Uin) and the channel
half-width (H/2), is approximately 414, which would result in laminar flow in isothermal conditions. However, thermal
plumes generated by the buoyancy force triggers transition to turbulence.

The length (L) and height (H) of the test section in the experiment are 61 cm and 7.62 cm, respectively. The spanwise do-
main size is 61 cm. The mean streamwise velocity (Uin) and temperature (Tin) of the inflow approaching the test section are
1.09 cm/s and 284 K, respectively. For x = 0–61 cm, the temperature at the bottom wall (Tw) is 318 K, while the top wall is
adiabatic. The streamwise and wall-normal location of the center of the tube is (xcyl,ycyl) = (42.7 cm,1.43 cm). The diameters
of the inner (di) and outer cylinder (do) are 6.35 mm and 15.875 mm, respectively. The temperature and mass flux of the
water flow inside the inner cylinder are not documented in [21], nor is the heat flux from the inner cylinder. The temporally
and spatially averaged temperature (Tcyl) at the outer cylinder is 311.3 K.

The statistical data on the temperature field available in [21] are the time-averaged temperature and heat flux at the outer
cylinder, for both the experiment and their RANS computations. The time-averaged streamwise velocity and kinetic energy
profiles are also available for both cases at x = 0 and 5 cm upstream of the cylinder. These are used as the validation data in
the present study.

4.2. Computational setup

The computational conditions used in the present study are the same as in the experiment, with a few modifications to
the boundary conditions and the domain size.

With regard to the inlet velocity, [21] indicated that it is a laminar flow. The time-averaged streamwise velocity profile at
x = 0 without heating from below is available in [21]. In the preliminary study, a uniform flow starting at x = � 50 cm was
used in order to create a velocity profile at x = 0 in agreement with the experiment. With heating from below, the values of
the RMS velocity as well as the temperature are virtually zero before x = �2 cm. Based on this result, the streamwise domain
size is selected as � 3 cm < x < 61 cm. A few different inlet velocity B.C.s are tested, including an interpolated velocity profile
from the experiment. This velocity B.C. is steady in time, even though unsteady effects might be present in the experiment.
Tin is used as the Dirichlet B.C. at the inlet.

The domain size in the spanwise direction is reduced to 15 cm to limit the simulation cost. Based on the analysis of the
present instantaneous flow fields, we concluded that this spanwise size is sufficient. The size of a thermal plume initially
generated near x = 0 due to the Rayleigh–Taylor instability (i.e., the size of the smallest coherent structure) is observed to
be less than 1.3 cm in the spanwise direction.

The velocity B.C. at the walls is the no-slip condition. At the outlet at x = 61 cm, the convective outflow condition [27] is
used for both velocity and temperature. The temperature B.C.s at the bottom and top walls are the same as in the experi-
ment. Since the heat flux at the inner cylinder was not measured, we assume it was constant. The value of the constant heat
flux is adjusted during the simulation such that the measured averaged temperature at the outer cylinder matches the value
Fig. 10. The locally refined mesh for the heated cylinder case.
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(Tcyl) from the experiment. After a simulation, the value of the constant heat flux is updated to compensate for the difference
in Tcyl between the simulation and experiment. This process is iterated until the difference in Tcyl is less than 0.2�; this typ-
ically increased the cost of the computation by a factor of at least three.

Eqs. (1) and (3) are used as the governing equations. Material properties – the viscosity (l), density (q), thermal conduc-
tivity (k), and specific heat at constant pressure (cp) – are functions of the temperature. For water, the tabulated data from
[19] are used. For the stainless steel cylinder, the data for AISI-304 from [16] are used. The specific type of stainless steel is
not described in [21]. For the gravitational acceleration, we set gi, (gx,gy,gz) = (0,�981 cm/s2,0).

Fig. 10 shows an example of the locally refined mesh used in the present study. Several grids consisting of 6–12 million
points were tested in order to assess the resolution requirement. Details of the grid study are presented in the next section. A
broad spectrum in the geometric scales exists in the present problem. More specifically, the channel length is 61 cm, while
the radius of the outer cylinder is 0.79 cm. We found that the local mesh refinement technique is very useful to reduce the
number of mesh points, since it can achieve a rapid spatial change in the mesh resolution. The computational time step Dt is
chosen so that the maximum CFL number is 1.9. The region of a high CFL number is very localized near the cylinder where
the mesh spacing is smallest.

4.3. Effect of grid resolution

Because the present problem involves transition to turbulence, it is expected to be very sensitive to flow and computa-
tional conditions; in particular, the mesh resolution is especially important.

Three different mesh resolutions were tested in the present study. We observed that the region most sensitive to the
mesh resolution is near the bottom wall, especially in the entry region where organized thermal plumes are generated
and the transition is triggered.

Table 2 shows the mesh resolution of the three meshes in the wall unit. The friction velocity us is computed based on the
wall shear stress at x = 36 cm, where [21] observed that the flow is fully developed. Grid #1 has a resolution similar to what
is used for LES of a fully developed turbulent channel flow. Grid #2 has a finer resolution; the grid spacing in the x-direction
is halved in the entire domain. The wall-normal (y) spacing is also smaller near the center of the channel. In Grid #3, the grid
spacings in both x- and y-directions are reduced by half near the bottom wall. The grid spacing in the y-direction near the
center of the channel is halved. The grid spacing at the cylinder’s outer wall is the same for all cases. To perform the grid
sensitivity analysis, conjugate heat transfer is not considered. Instead, the time-averaged temperature field from the exper-
iment is used as the Dirichlet B.C. at the outer cylinder. The interpolated velocity profile from the experiment is used as the
B.C. at x = �3 cm.

Fig. 11 shows contours of the instantaneous temperature using the three different grids in Table 2. Although Grid #1
would be sufficient for a fully turbulent channel flow, the results show that it is insufficient for the present case. The differ-
ence in results between Grids #2 and #3 is not as significant, but still visible. We observed that increased grid resolution
results in a shorter bursting frequency of the initial thermal plumes and stronger mixing in the downstream region. The
number of mesh points in Grid #3 is approximately 10 million.

Fig. 12 shows the averaged velocity profiles 5 cm upstream of the cylinder using the different grids. Compared to the
experiment, the velocity profiles from the present study are distinctly asymmetric, but the asymmetry is reduced using finer
meshes; however, the velocity profile from the experiment is not reproduced even when Grid #3 is used. The flow is asym-
metric in the entry region because transition occurs only at the bottom wall. The symmetric profile from the experiment
therefore implies that the flow is fully developed at 5 cm upstream of the cylinder. The RANS result of [21] shows a good
agreement with the experiment because the x-velocity and kinetic energy profiles at x = 36 cm from the experiment were
used as the B.C.s at the inlet (note that the cylinder is located at x = 42.7 cm).

Fig. 13 shows the averaged heat flux at the outer cylinder using the different grids. Interestingly, this quantity does not
show strong dependency on the grid. This result implies that the averaged heat flux is insensitive to the upstream condition
if a certain amount of mixing is achieved ahead of the cylinder. The results from the present study show a better agreement
with the experimental data than the previous RANS result [21]. We believe that this is because the present study resolves the
transition and the subsequent turbulence dynamics more accurately.

Fig. 14 shows the profiles of the square root of the kinetic energy defined as k1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2u02 þ v 02Þ=2

q
at 5 cm upstream of

the cylinder. The difference between results obtained on Grids #2 and #3 is not large, but both show large discrepancy with
respect to the experiment. Fig. 15 shows contours of the instantaneous streamwise velocity and temperature using Grid #3.
Large-scale thermal plumes are observed in the downstream region. These large-scale structures contribute significantly to
Table 2
Mesh spacings in wall units for grids in the heated cylinder case.

Grid #1 Grid #2 Grid #3

(Dx+,Dy+,Dz+) at y
H ¼ 0 (6.0,0.24,4.5) (3.0,0.24,4.5) (1.5,0.12,4.5)

(� � �) At y
H ¼ 0:5 (6.0,4.0,4.5) (3.0,2.0,4.5) (3.0,1.0,4.5)

(� � �) At the outer cylinder (0.12,0.12,4.5) (0.12,0.12,4.5) (0.12,0.12,4.5)



Fig. 11. Contours of the instantaneous temperature (T) using different grids in Table 2. 30 contour levels for T = 284–305 K.
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Fig. 12. Profiles of the averaged streamwise velocity at 5 cm upstream of the cylinder using different grids in Table 2: �, experiment [21]; �, RANS [21]; —-,
Grid #1; - - - -, Grid #2; � � ��, Grid #3.
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the kinetic energy. Assuming that the large-scale structures become weaker after the transition stage due to increased small-
scale motions (as observed in [30]), the smaller kinetic energy profile from the experiment implies that the transition is com-
pleted earlier in the experiment compared to the simulations.

In summary, the strong dependency of the velocity and kinetic energy on the mesh resolution means that a very fine
mesh is necessary for correctly predicting the transition in the entry region. Meanwhile, the averaged heat flux at the outer
wall is shown to be much less sensitive to the mesh resolution. Although grid convergence is not strictly achieved, Grid #3 is
chosen as the standard mesh in the present study. A possible explanation for the observed discrepancies with the
experimental measurements is that the transition to turbulence in the present study is delayed with respect to the
experiment.



5

10

15

20

25

30

35

40

45

0 50 100 150 200 250 300 350

Fig. 13. The time-averaged heat flux at the outer cylinder using different grids in Table 2: �, experiment [21]; �, RANS [21]; —-, Grid #1; - - - -, Grid #2; � � ��,
Grid #3. 0� and 90� correspond to the forward stagnation point and the top of the cylinder.
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Fig. 14. Profiles of the square root of the kinetic energy at 5 cm upstream of the cylinder using different grids in Table 2: �, experiment [21]; �, RANS [21];
—-, Grid #1; - - - -, Grid #2; � � ��, Grid #3.

Fig. 15. Contours of the instantaneous streamwise velocity (u) and temperature (T) using Grid #3 in Table 2. 30 contour levels for u = 0.0–1.7 cm/s and 30
contour levels for T = 284–305 K.
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4.4. Effect of inflow condition

Another important factor to consider in the transition to turbulence is the inlet velocity. The velocity B.C. described in the
previous section is a steady profile obtained from the experiment. The presence of velocity fluctuations in the experiment is
not documented, and therefore, here the effect of different inlet velocity profiles is investigated.

We considered three different velocity profiles. The first is interpolated from the experiment. The second is the uniform
x-velocity profile (=Uin); we expect that this profile produces a high shear rate in the entry region, which may promote tran-
sition to turbulence. The third profile is a ‘‘recycled” velocity profile; in the RANS simulation of [21], the x-velocity and
kinetic energy profiles at x = 36 cm from the experiment were used as the B.C.s at x = 0 cm. Using the same procedure em-
ployed in [21], the velocity profile at x = 36 cm is recycled to x = �3 cm. Note that the velocity is the only recycled variable;
the temperature B.C. is not changed.

Figs. 16 and 17 show the averaged velocity at x = 0 and at 5 cm upstream of the cylinder, respectively, while Fig. 18 shows
the kinetic energy profiles at 5 cm upstream of the cylinder using the different inlet velocity profiles. The case using the recy-
cled B.C. shows the closest agreement to the measurements. The symmetry of the velocity is largely recovered. However, the
kinetic energy profile is still over-predicted. An interesting finding is the poor agreement for the simulation using the uni-
form velocity profile.
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Fig. 16. Profiles of the averaged streamwise velocity at x = 0 using different inlet velocity profiles: —-, interpolated from [21]; - - - -, uniform (Uin); � � ��,
recycled from x = 36 cm.
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Fig. 18. Profiles of the square root of the kinetic energy at 5 cm upstream of the cylinder using different inlet velocity profiles: �, experiment [21]; �, RANS
[21]; —-, interpolated from [21]; - - - -, uniform (Uin); � � ��, recycled from x = 36 cm.
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Figs. 19 and 20 show contours of the instantaneous streamwise velocity and temperature. The instantaneous flow struc-
tures are qualitatively different with the three boundary conditions. The high shear rate from the uniform profile produces
an instability that maintains organized laminar structures farther downstream than the other inflow conditions. Transition is
therefore delayed, which results in a poor agreement with the measurements.

Fig. 21 shows the averaged heat flux at the outer cylinder. The heat flux values are similar for the cases using the inter-
polated and recycled velocity profiles. Based on the results, we can conclude that the averaged heat flux is not very sensitive
to the inflow condition. With the uniform profile, the velocity field is laminar for a longer distance, which results in a rela-
tively larger difference in the heat flux. The overall agreement is still good.

In conclusion, one finding in the present study is the difficulty in specifying the inflow to reproduce the experiment con-
ditions. From the observation that transition occurs earlier in the experiment, the next step might be to introduce instability
modes (for example uneven and unsteady thermal heating on the plate) to investigate the possible pathways to turbulence
Fig. 19. Contours of the instantaneous streamwise velocity (u) using different inlet velocity profiles. 30 contour levels for u = 0.0–1.7 cm/s.



Fig. 20. Contours of the instantaneous temperature (T) using different inlet velocity profiles. 30 contour levels for T = 284–305 K.
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breakdown. This analysis was clearly outside the scope of the present work and will be the subject of a future study. In spite
of the uncertainty in the inflow, the averaged heat flux at the outer cylinder is not very sensitive to the inlet specifications.

4.5. Results with conjugate heat transfer

Fig. 22 shows the averaged heat flux at the outer cylinder for the cases with conjugate heat transfer. Two cases with dif-
ferent inlet velocity profiles – the interpolated profile from the experiment and the recycled profile – are compared to a case
without conjugate heat transfer. Discrepancies are observed near the local maximum and minimum of the heat flux for the
cases with and without conjugate heat transfer. Fig. 23 shows the RMS temperature at the outer cylinder; the regions of high
RMS value coincide with the regions of relatively large differences between the two computational cases.
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Fig. 22. The time-averaged heat flux at the outer cylinder: �, experiment [21]; �, RANS [21]; —-, with solid conduction and the interpolated inflow; - - - -,
with solid conduction and the recycled inflow; � � ��, without solid condition and the interpolated inflow. 0� and 90� correspond to the forward stagnation
point and the top of the cylinder.
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Figs. 24 and 25 show contours of the instantaneous temperature. The temperature field inside the cylinder interacts with
the vortex shedding behind the cylinder. Fig. 25(a) shows that initial thermal plumes are quasi-periodic in the spanwise
direction, as well as in time. The initial thermal plumes are broken down by the subsequent downstream plumes and become
turbulent.

Fig. 26 shows contours of the instantaneous heat flux at the outer cylinder and several radial locations inside the cylinder.
Compared to the temperature (Fig. 24), the instantaneous heat flux visualizes the effect of flow structures on solid conduc-
tion more clearly; regions of low heat flux (h � ±110) at the outer cylinder (Fig. 26(a)) belong to separation points. These
regions can be identified in all the other figures, which means that the effect of flow separation is present in the entire radial
range of the solid. Near the upstream stagnation point (h = 0), the heat flux at the outer cylinder shows a large variation in
the spanwise direction. Figs. 24 and 25 show that high temperature plumes intermittently impinge on the front side of the
cylinder. This phenomena is closely related to the reduced local heat flux around h = 0.

4.6. Effects of the Boussinesq approximation and constant material properties

The results described in the previous sections are obtained using a variable density formulation of the Navier–Stokes
equation Eqs. (1)–(3). In the present problem, the fluid is water, which has a small coefficient of thermal expansion
(=�(1/q)oq/oT). The Boussinesq approximation with constant material properties Eqs. (7)–(9) is therefore the preferred
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Fig. 23. RMS temperature at the outer cylinder for the cases with solid conduction: —-, with the interpolated inflow; - - - -, with the recycled inflow. 0� and
90� correspond to the forward stagnation point and the top of the cylinder.



Fig. 24. Contours of the instantaneous temperature (T) with solid conduction (side view (x � y)). 60 contour levels for T = 284–320 K.
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method for natural and mixed convection problems under these conditions. Fig. 27 shows the averaged velocity and kinetic
energy profiles at 5 cm upstream of the cylinder obtained using the variable density formulation and the Boussinesq approx-
imation. The difference between the two formulations does not appear to be significant. As previously mentioned, the aver-
aged heat flux at the outer cylinder is relatively insensitive to the flow conditions.

A limitation of Eqs. (7)–(9) is the use of constant material properties. For example, in the present temperature range (from
284 to 318 K), the coefficient of thermal expansion b increases by 4 times. The kinematic viscosity m also shows a large
change – it decreases by half. As a consequence, the Grashof number (Gr = gbDTL3/m2) increases by 16 times in the considered
temperature range. Because of the strong sensitivity of the transitional regime to the fluid properties, the simulation results
may vary significantly depending on the choice of reference temperature for the material properties. In order to verify the
sensitivity to a specific choice of the reference temperature, simulations with Eqs. (7)–(9) are performed with three different
reference temperatures: 284 K (Tin), 301 K (the film temperature = (Tin + Tw)/2), and 318 K(Tw). Fig. 28 shows contours of the
instantaneous temperature. The three cases show very different flow structures and the results suggest that the variable den-
sity formulation in a transitional water flow with mixed convection is preferable, since it can remove the uncertainty in the
definition of the (constant) material properties in the Boussinesq approximation. It is worth mentioning that with a proper
Fig. 25. Contours of the instantaneous temperature (T) with solid conduction (top view (x � z) at y = 1.43 cm). 60 contour levels for T = 284–318 K.



Fig. 26. Contours of the instantaneous heat flux (q
00
) at several radial locations for the interpolated inflow case. 15 contour levels for q

00
= 8,940–35,760 kW/

m2. 0� and 90� correspond to the forward stagnation point and the top of the cylinder.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6 7

Fig. 27. Profiles of the averaged streamwise velocity and the square root of the kinetic energy at 5 cm upstream of the cylinder: �, experiment [21]; —-,
Boussinesq approximation with constant properties Eqs. (7)–(9); - - - -, variable density formulation Eqs. (1)–(3).
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Fig. 28. Contours of the instantaneous temperature (T) using different reference temperatures. 30 contour levels for T = 284–305 K.
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choice of (constant) b and m (or the Grashof number), the computations performed using the Boussinesq approximation are
comparable to the variable density predictions, as shown in Fig. 27.

5. Conclusions

The immersed boundary (IB) method has become popular for flow problems involving very complex geometries and mov-
ing bodies. In the present study, we utilized its capability of handling multi-material problems and assessed the IB method as
an efficient tool for a turbulent conjugate heat transfer problem.

For multi-material problems, an approach based on immersed discontinuous grids has been developed. The fluid–solid
interface consists of adjoining Cartesian faces from heterogeneous material zones. After projection of these faces onto the
true material interface and the computation of the velocity reconstruction coefficients, the physical conditions for the mate-
rial interface are satisfied by second-order interpolation. When applied to a canonical two-dimensional conjugate heat trans-
fer problem, the approach shows first-order accuracy due to the one-sided finite-difference used to compute the heat flux.

The present approach was applied to the turbulent conjugate heat transfer problem of a heated cylinder in a channel with
heating from below. In this application, an instability is triggered by thermal plumes originating from the heated bottom
wall, and the flow transitions to turbulence. This process is observed to be very sensitive to the inflow conditions. As a result,
a very fine mesh resolution is required in the upstream region of the cylinder. We used local mesh refinement to effectively
reduce the number of computational mesh points in the presence of the large difference in length scales (i.e., small heated
cylinder in a large channel). In contrast to the upstream flow field, the time-averaged heat flux at the cylinder outer wall is
shown to be relatively insensitive to the mesh and inflow condition, and in general, the heat flux shows good agreement with
the experiment. In contrast, the averaged velocity and kinetic energy profiles in the upstream of the cylinder show large
deviations from the measurement. The inclusion of solid conduction in the heat transfer problem leads to better agreement
with the experiment near the local maximum and minimum of the averaged heat flux. This has been explained with a large
variation of the heat flux at the separation point. Although the fluid is water and has a small thermal expansion coefficient,
simulations with the Boussinesq approximation with constant material properties show an uncertainty depending on the
choice of reference temperature used to obtain the material properties, which requires a careful choice of physical param-
eters. Thus, the variable density formulation is preferred in the considered transitional flow with mixed convection.
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